For the past two weeks we have been doing an interesting activity in my math class that focuses on teaching geometry for elementary students. We have been creating hexagons and classifying them. At first I was uncertain about what I would learn about teaching geometry to elementary students from creating and coming up with names for these hexagons that we had created however I found the process to help my understanding and move me forward in my Van Hiele thinking. I am certain that if adapted to their level, this could be a very beneficial activity for elementary students to help them better understand the concepts associated with classifying quadrilaterals rather than memorizing the properties that are commonly used in classifying them.
The first thing that we did as a part of this activity was we created as may different hexagons as we could. Our only limitation was the dot paper we were using, however even in this there were many, many hexagons that we could create that all looked very different. Of these shapes there were some that were concave, convex, had reflex angles or more than one reflex angle, there were some with right angles, and of course the regular hexagon was one of the first for almost everyone to draw. These varied shapes allowed for use to be as creative as we could and discover as many “odd” hexagons that we could until we had exhausted all possibilities. If elementary students were able to do this activity using quadrilaterals instead of hexagons I believe that this could be an incredible activity that could help move them up in their Van Hiele level of thinking as well and allow them to discover and learn through inquiry. This of course is one of the best ways that students can learn is though self-exploration. In coming up with all the possible quadrilaterals they can I think that they could become more comfortable with some of the shapes that they do not see as frequently such as trapezoids. By giving them this time to play and explore these non-standard shapes they will become more comfortable simply by familiarity. The next thing that we did in our class exploration with hexagons was that we took all of the hexagons that we created and defined a “type.” We then proposed these types for the class which as a group we either decided was a good type or we vetoed it and decided not to make it a shape. As we were doing this I found myself asking the question “What makes a good type?” After some deliberation in my group we thought that the answer to this would be that a good group has very specific characteristics that would include a population of hexagons but would also eliminate a significant portion as well. As we thought about our definition of what a type should be, I believe this influenced how we thought about the propositions of what types we thought that we should keep and which one we thought were not necessary. I love this aspect of the activity for elementary age students. By creating their own categories and deciding what they think would be a good type could help them in as they learn what the mathematically accepted types of quadrilaterals are and why we have chosen these to be types. I also like the critical thinking that is involved as students propose types they must think about the specific examples of what rules will fit the shapes they have created as well as the additional rules they must come up with to include or exclude other specific shapes that can be made. Now that we had our categories the next thing that we did was we were asked to create shapes that would fit in exactly 3 categories, 2 or more categories, and exactly one category. I found this to be one of the most challenging activities that we did with this activity. I think that this is because we had created all of rules, it was difficult for me to find one shape that fit exactly in one of my categories because I was unsure as to what I was trying to not create as well. After recognizing that we had both concave and convex as a category, I realized that in order to be just one category, the hexagon would have to fall in either of these categories yet none of the others. After discovering this it became easier for me to come up with an example that would fit just one category. I also tried to create a venn diagram for the shapes that we had created and I found this incredibly challenging as there was a difficult aspect in knowing what to do with categories that overlapped in some categories but not in others. After modeling my venn diagram after that of quadrilaterals it became somewhat easier to create yet still proved to be a mathematically challenging activity. I think that this could be an extension for some students who show that they are proficient in their math abilities in the previous activities with quadrilaterals. As students categorize and organize these categories they will begin to question and further examine their definitions and ask themselves if their definitions are inclusive or exclusive. This would lead to a good discussion to the mathematically accepted definitions of quadrilaterals that are inclusive and why they think this could be. Students could also use this time to see if they would like to eliminate certain categories that they had created and come up with reasoning why they should eliminate it. Some categories could be redundant or only cater to a small population of hexagons that may seem irrelevant or grouped better by another definition. In participating through these activities, I would think that these critically thinking questions can help students to move up in their thinking. Hopefully by carefully analyzing and looking at all properties of quadrilaterals, students could possibly begin to think formally and continue to realize that very frequently it is the shape properties are what we analyze in mathematics.
2 Comments
I recently started another math class for elementary education major and am continuing to love what I will get to go into when I graduate. The topics that we have been exploring for the past few days have ranged from Van Hiele levels to different ways students learn shapes to noticing and recognizing attributes. One thing that I have particularly enjoyed learning about was attributes. What I particularly enjoyed through this process was that I was beginning to notice how I was finding patterns. I think this was important as a future teacher as this was not something that I have really thought about much but needs to be as noticing patterns is a critical step in school that elementary age students make. Often students do not know how to even begin. From this thought what stuck out to me the most was how important it was to have both examples and non-examples. I found both of these to be important so that I could come up with a possible rule then use the examples and non-examples to either confirm or deny that that was the actual rule.
One activity that I found online at http://www.crazyforfirstgrade.com/2011/12/attributes-and-sorting-fun.html was a game that could help students develop this ability called “guess my rule.” This would be a game where students are given a worksheet with a circle on it and develop a rule for shapes that should go in the circle. Students would then use shape blocks and place these in the circle according to whether or not they belong inside the circle. What I really like about this activity is that students get to practice creating the rule and using their judgement on if the shape they have fits in the circle or not. I also like how this activity could be use multiple ways as students can spend time creating the rule as well as trying to figure out what fellow classmates came up with as their rule. If done in partners and the student guessing finds another rule that would also fit this group of shapes or if there was a shape in their circle that contradicted their rule this could lead for a good discussion. Students could talk about why the shape they have breaks their rule or if there was another shape they could add that would help define between the two rules the students came up with. One thing that I would like to modify about this game would be to create a space where students could put shapes that do not fit the rule. This would help emphasize the idea I discussed earlier about the importance of examples and non-examples. This could also lead to good discussion as to why particular shapes are not “in.” Students could also discuss what the shapes outside the circle have in common and notice they all lack the attributes of those inside the circle. All activities help student develop critical thinking and problem solving skills that are critical in elementary age students. |
## AuthorMy name is Chelsea VanderZwaag, I am a senior at Grand Valley State University majoring in Mathematics and Elementary Education. ## Archives
December 2015
## Categories |